An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting
نویسندگان
چکیده
Although importance sampling is an established and effective sampling and estimation technique, it becomes unstable and unreliable for highdimensional problems. The main reason is that the likelihood ratio in the importance sampling estimator degenerates when the dimension of the problem becomes large. Various remedies to this problem have been suggested, including heuristics such as resampling. Even so, the consensus is that for large-dimensional problems, likelihood ratios (and hence importance sampling) should be avoided. In this paper we introduce a new adaptive simulation approach that does away with likelihood ratios, while retaining the multi-level approach of the cross-entropy method. Like the latter, the method can be used for rare-event probability estimation, optimization, and counting. Moreover, the method allows one to sample exactly from the target distribution rather than asymptotically as in Markov chain Monte Carlo. Numerical examples demonstrate the effectiveness of the method for a variety of applications.
منابع مشابه
The Gibbs Cloner for Combinatorial Optimization, Counting and Sampling
We present a randomized algorithm, called the cloning algorithm, for approximating the solutions of quite general NP-hard combinatorial optimization problems, counting, rare-event estimation and uniform sampling on complex regions. Similar to the algorithms of Diaconis–Holmes–Ross and Botev–Kroese the cloning algorithm is based on the MCMC (Gibbs) sampler equipped with an importance sampling pd...
متن کاملA Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation
We present a new method, called the minimum cross-entropy (MCE) method for approximating the optimal solution of NP-hard combinatorial optimization problems and rare-event probability estimation, which can be viewed as an alternative to the standard cross entropy (CE) method. The MCE method presents a generic adaptive stochastic version of Kullback’s classic MinxEnt method. We discuss its simil...
متن کاملAN OPTIMUM APPROACH TOWARDS SEISMIC FRAGILITY FUNCTION OF STRUCTURES THROUGH METAHEURISTIC HARMONY SEARCH ALGORITHM
Vulnerability assessment of structures encounter many uncertainties like seismic excitations intensity and response of structures. The most common approach adopted to deal with these uncertainties is vulnerability assessment through fragility functions. Fragility functions exhibit the probability of exceeding a state namely performance-level as a function of seismic intensity. A common approach...
متن کاملSelecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction
In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...
متن کاملOptimization of profit and customer satisfaction in combinatorial production and purchase model by genetic algorithm
Optimization of inventory costs is the most important goal in industries. But in many models, the constraints are considered simple and relaxed. Some actual constraints are to consider the combinatorial production and purchase models in multi-products environment. The purpose of this article is to improve the efficiency of inventory management and find the economic order quantity and economic p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008